We use cookies to improve your experience on our Website. We need cookies to continually improve our services, enable certain features, and when we embed third-party services or content, such as the Vimeo video player or Twitter feeds. In such cases, information may also be transferred to third parties. By using our website, you agree to the use of cookies. We use different types of cookies. You can personalize your cookie settings here:

Show detail settings
Please find more information in our privacy statement.

There you may also change your settings later.

Insulin resistance in brain areas of obese

Kullmann S, Heni M, Veit R, Scheffler K, Machann J, Häring HU, Fritsche A, Preissl H. Selective Insulin Resistance in Homeostatic and Cognitive Control Brain Areas in Overweight and Obese Adults. doi: 10.2337/dc14-2319, Diabetes Care March 20, 2015

 

For the first time DZD scientists evaluated the specific brain areas affected by insulin resistance. They compared the cerebral blood flow (CBF) of lean and overweight/obese participants after application of intranasal insulin. Dr. Stephanie Kullmann, Dr. Hubert Preißl and colleagues (Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the Eberhard-Karls-University of Tübingen) found a significant CBF decrease in the hypothalamus in both lean and overweight/obese participants compared with placebo. The magnitude of this response correlated with visceral adipose tissue independent of other fat compartments. Furthermore, they observed a differential response in the lean compared with the overweight/obese group in the prefrontal cortex, resulting in an insulin-induced CBF reduction in lean participants only. This prefrontal cortex response significantly correlated with peripheral insulin sensitivity and eating behavior measures as disinhibition and food craving. Behaviorally, a significant reduction for the wanting of sweet foods after insulin application was observed in lean men only.

The identification of hormone-brain interactions that modulate food intake can potentially aid in the development of effective obesity therapies. Reduction of body weight would also contribute to the prevention of type 2 diabetes.

Original publication:
Kullmann S, Heni M, Veit R, Scheffler K, Machann J, Häring HU, Fritsche A, Preissl H. Selective Insulin Resistance in Homeostatic and Cognitive Control Brain Areas in Overweight and Obese Adults. doi: 10.2337/dc14-2319, Diabetes Care March 20, 2015

Link to the publication:http://care.diabetesjournals.org/content/early/2015/03/19/dc14-2319.long