Tübingen, 22.04.2022
A Low-Calorie Diet Alters the Gut Microbiome and Delays Immune Aging
A calorie-reduced diet cannot only delay the development of metabolic diseases, but also has a positive effect on the immune system. Researchers have now shown for the first time that this effect is mediated by an altered gut microbiome*, which slows down the deterioration of the immune system in old age (immune senescence). The study has been published in ‘Microbiome’.
Around 2 billion people worldwide are overweight. Obesity increases the risk of developing high blood pressure, heart attack or type 2 diabetes mellitus and can cause inflammation in the body that weakens the immune system through an accumulation of specific memory T and B cells. This process is called immune senescence, an age-related change in the immune system. In obese people, the development of metabolic diseases such as type 2 diabetes can be delayed by a low-calorie diet. In addition, such a diet also has a positive effect on the immune system. But exactly how the positive effects are mediated and what role the gut microbiome plays in this process is not yet known. In a recent study**, researchers have now investigated the interactions between calorie-reduced diets, the microbiome, metabolism and the immune system.
Calorie-reduced diet alters the gut microbiome
For this purpose, they first analyzed how a very low-calorie diet (800 kcal/day for 8 weeks) affected the gut microbiome of an obese woman. In the next step, the researchers transplanted the gut microbiota before and after the diet intervention into germ-free mice to establish a gnotobiotic mouse model. "In this way, we were able to determine the sole effects of the diet-shaped gut microbiome on metabolism and the immune system," said Reiner Jumpertz-von Schwartzenberg, last author of the study and a scientist at the Institute of Diabetes Research and Metabolic Diseases of Helmholtz Munich at the University of Tübingen, a partner of the German Center for Diabetes Research (DZD). He led the study together with Hans-Dieter Volk and Joachim Spranger of Charité.
Diet-altered gut microbiome improves metabolism and delays immune senescence
By transplanting the diet-altered microbiota, glucose metabolism improved and fat deposition decreased. In addition, mass cytometry showed that the level of specific memory T and B cells was also reduced. "This indicates delayed immune senescence," said Julia Sbierski-Kind, first author of the study.
"These findings suggest that the positive effects of a low-calorie diet on metabolism and the immune system are mediated via the gut microbiome," Sbierski-Kind said. However, the authors of the study emphasize that the investigation has so far only been conducted with the microbiome of one person and that the experiments will have to be repeated with additional subjects to confirm the results. The new findings could also be interesting for medical practice in the long term. "An improved understanding of the complex interplay between diet, the microbiome and the immune system may set the stage for the development of new microbiome-based therapeutic avenues to treat metabolic and immune diseases," said Jumpertz-von Schwartzenberg.
*Gut microbiome
The gut microbiome is the term used to describe the totality of all microorganisms and intestinal bacteria in our digestive tract. Among other things, it influences the immune system and the metabolism of its host.
**About the study:
The aim of the study was to determine the interactions between a calorie-restricted diet, microbiome and the immune system. To this end, a human dietary intervention trial was combined with gnotobiotic experiments in which immunophenotyping was determined by multidimensional single cell mass cytometry. The following institutes and research facilities were involved:
German Center for Diabetes Research (DZD)
Institute of Diabetes Research and Metabolic Diseases (IDM) of Helmholtz Munich at the University of Tübingen
Department of Internal Medicine IV (Director: Prof. Andreas Birkenfeld), Tübingen University Hospital
Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections" (CMFI), University of Tübingen
Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt University of Berlin
Department of Endocrinology and Metabolism, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt University of Berlin
Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Flow & Mass Cytometry Core Facility, Berlin
Original publication:
Sbierski-Kind, J., … Spranger, J. , Jumpertz von Schwartzenberg, R. et al.: Effects of caloric restriction on the gut microbiome are linked with immune senescence. Microbiome 10, 57 (2022). DOI: 10.1186/s40168-022-01249-4
Scientific contact:
Dr. Reiner Jumpertz-von Schwartzenberg
Medical Clinic Internal Medicine IV (Director: Prof. Andreas Birkenfeld)
Diabetology, Endocrinology, Nephrology
Tübingen University Hospital
Otfried-Müller-Straße 10
72076 Tübingen
Germany
Email: reiner.jumpertz-vs(at)med.uni-tuebingen.de
Phone: +49 (7071) 29-68934
About the study leader:
Dr. Reiner Jumpertz-von Schwartzenberg has been a senior physician at the Medical Clinic IV Endocrinology, Diabetology and Nephrology at Tübingen University Hospital (research focus: translational obesity research) and junior research group leader of the Cluster of Excellence "Controlling Microbes to Fight Infections" since 2021. He is a scientist at the DZD partner Institute for Diabetes Research and Metabolic Diseases of Helmholtz Munich at the University of Tübingen. Previously, he worked as a physician and clinical scientist at Charité.
Founded in 1805, Tübingen University Hospital is one of the leading centers of German university medicine. As one of the 33 university hospitals in Germany, it contributes to the successful combination of high-performance medicine, research and teaching. Well over 400,000 inpatients and outpatients from all over the world benefit annually from this combination of science and practice. The clinics, institutes and centers unite all specialists under one roof. The experts work together across disciplines and offer each patient the best possible treatment based on the latest research findings. Tübingen University Hospital conducts research for better diagnoses, therapies and healing chances; many new treatment methods are clinically tested and applied here. In addition to diabetology, neuroscience, oncology, immunology, infection research and vascular medicine are research priorities in Tübingen. The Department of Diabetology /Endocrinology has been the center of interdisciplinary research over the past 25 years, especially with the participation of surgery, radiology and laboratory medicine. This important discovery of the prediabetes subtypes was only possible due to the interdisciplinary collaboration between the hospital’s various departments. Tübingen University Hospital is a reliable partner in four of the six German Centers for Health Research initiated by the German Federal Government. www.medizin.uni-tuebingen.de
Press contact
Birgit Niesing
niesing(at)dzd-ev.de
+49 (0)89 3187-3971